
Local Hamiltonian structures of multicomponent KdV equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 4549

(http://iopscience.iop.org/0305-4470/21/24/010)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) 4549-4556. Printed in the U K  

Local Hamiltonian structures of multicomponent Kdv equations 
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Received 13 June 1988 

Abstract. We discuss the behaviour of Hamiltonian structures for a generalised A K N S  
hierarchy under componentwise reductions to equations of K d v  and M K d v  type, identifying 
those cases where a new local structure arises. 

Amongst the many attributes of integrable PDE in one time and one space dimension, 
such as their construction from infinite-dimensional algebras and their solvability via 
the inverse scattering transform, is the fact that they possess hierarchies of Hamiltonian 
structures [ 11. These hierarchies are infinite and all but a finite number of their members 
are non-local, i.e. involve the'formal operator a ; ' ,  although the PDE themselves need 
not be non-local. The nth-order symmetry of such a PDE is thus expressed in all the 
ways: 

u,r,, = W m ( V u W n - m )  

for n, m E Z and n > m, where {a,} is the hierarchy of Hamiltonian structures and {W,} 
the hierarchy of Hamiltonian functionals. It is generally the local Hamiltonian struc- 
tures which are taken to be of interest. 

In this paper we discuss the Hamiltonian structures of certain reductions of classes 
of multicomponent generalisations of the A K N S  hierarchy: those associated with Her- 
mitian symmetric spaces. These are discussed in more detail elsewhere [2,3]. We shall 
see that the existence of a local Hamiltonian structure is by no means characteristic 
of these reduced generalised equations. The only locally Hamiltonian equations turn 
out to be the square matrix Kdv equations. 

Firstly, in order to motivate the proceedings, we discuss the simple p, q system 
associated with the 2 x 2 AKNS problem [4] and its Kdv and MKdv reductions. 

The A K N S  linear problem 

gives rise to non-linear evolution equations, of which the two simplest non-trivial ones 
are 

(2) 
(3) 

2 
= 4,xx - 2q2P 

a2q,r, = 4,xx.x - 6Pqq,x 
-UP,,, = P,xx -2P 4 
a2P,13 = P,xxx - 6qPP,x ' 

This hierarchy of flows is generated from the trivial one, q,r, = q,x and P , ~ ,  = P , ~ ,  by a 
non-local recursion operator which is easily derived from the hierarchy of linear 
problems. In fact, 
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where a = a, = d,, . We call this recursion operator W. Each equation has a single local 
Hamiltonian structure: 

Hence by (4) we obtain an infinite hierarchy of such structures [l] whereby any flow 
may be derived from any Hamiltonian: 

or 

where n, m > 0. 

the odd-order flows one may take p = * q :  
The hierarchy associated with (2) and (3) has certain admissible reductions. For 

a2q,t3 = 9,XX.x 6q2q,, (8) 

a2q,t3 = q x x x  +6qq,x (9) 

(the modified Kdv equation [ 5 ] )  or one may take p = -1: 

(the Kdv equation [5]). A consequence of either of these reductions is that the 
odd-numbered Hamiltonians in (6) vanish and so we lose the local Hamiltonian 
structure of the p ,  q system. 

Both equations (8) and (9), however, have local Hamiltonian structures [6]; indeed, 
equation (9) has two and they arise from the non-local structures %u0 and !Xi-lo0 in 
the following ways. 

For the MKdv reduction, put q = U + 7 and p = U - 7 into the w 1  structure and note 
that 

~ 2 n [ u +  7, U -  71 = ~ 2 n [ u ,  u I  + 0 ( v 2 ) *  (10) 

(The behaviour of the Hamiltonian functionals under (M)Kdv type reductions is con- 
sidered in appendix 1 for the general multicomponent case.) Consequently as 7 + 0 
we retain O(1) terms only: 

and the non-local terms cancel to leave the Hamiltonian structure: 

, - I  6 
2 6u 

=-a - H,[ U, U]. 
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For the Kdv reduction put p = - 1 + 7 .  In this case WZn[q, - l + 7 ] =  
W2,,[q, -1]+Wi,[q, 7 ] + 0 ( 7 * ) ,  where W ; , [ q ,  71 is O(7)  as 7+0. Now the functional 
derivative S / S p =  6 / 8 7  acting on this O ( 7 )  term gives rise to an O(1) term: 

Again, the non-local terms cancel to leave the form 

The other Hamiltonian structure arises from 

under the same reduction. Multiplying by % and taking the 0 ( 1 )  terms gives 

-2qa-'q sW:/s7 
-d - 2a-'q) (04) ,13 = ( -6w4/ 6 q )  

and so, without involving W& at all, we have the Hamiltonian structure: 

It is not difficult to see, by application of the square of the reduced recursion operator 
in each case, that there are no other local Hamiltonian structures (assuming, of course, 
that every such structure for the reduced equation must arise from one for the unreduced 
equation). 

Next we examine this situation for some multicomponent (M)Kdv equations. 
A generalised AKNS linear problem of the following form is taken: 

(d, + l A +  Q)W = 0 (18) 

where W is an N-component vector and A and Q are N x N matrices. A is diagonal 
and traceless: 

A =  

n + m  

n + m = N  

where I, is the unit 1 x 1 matrix, so that Ad A is highly degenerate. The action of Ad A 
defines subspaces f ,  m' and m- of dimensions n2+ m 2 -  1, nm and mn respectively 
such that 

[ A ,  f l  = o  [ A ,  m'] = &am'  (20) 

and Q is taken to belong to m f O m -  and hence to be of the form 

o q  
P O  Q = Q'+ 0-= (+) 

where q and p are m x n and n x m matrices respectively. For more details see [2,3]. 



Note that if we define a-' to be j?m dx, assuming all components of p and q and 
all their x derivatives to be functions vanishing as x + --CO, then >I? has a formal inverse 
in the algebra of pseudodifferential operators, also with domain m: 

8-' =(Ad A)a-' f ((Ad Q)a-')2n 
n = O  

For the M K d v  type reduction, qv = 0, + vu and p, ,  = v,, - vJ1, we have (appendix 1) 
W 2 n + l = 0 ( 7 7 ) , W 2 n = W 2 n [ v ,  vT]+O(77*) as q + O  and then 

avy,t, = t ( a i / s , k a -  v r m a - ' v / m s , k  - vm,a-'VmkSiI)VvriWZ 

+;(Y,/a-'vk,  + vk,d-lYI/)Vvi,W~. (32) 

The other equation of the pair (29) and (30) gives the same equation under the 
permutation (ij)( Ik). So the reduced Hamiltonian structure is 

4(Sz/S,,a- V,,a-'qm6,k - vm,a-'vmkS,/+ V,ka-'VIJ + v b a - ' V , k ) .  (33) 
By performing contractions over j ,  k and i, I in the non-local part of (33) one sees that 
it can vanish only when U is a one-component matrix. Therefore, within this class of 
generalisations, only the one-component M K d v  has a local Hamiltonian structure. 

The K d v  type reduction is of slightly more interest. In (27) and (28) we put 
p = -r  + 7, where r is a constant matrix. Then 

W2n[q,PI = W 2 n [ q ,  - r I+Wn[4 ,  -r, 7?I+O(rl2) 

0 = ~ ( V , W , )  + r a - ' ( q V , ~ ~ )  + a - ' ( V , ~ ~ q ) r + 2 r a - ' ( V , ~ ; ) r  

V,W; = - t [r- 'd2(V,W;)r- '  + q ~ , ~ ~ r - ' +  r - ' ~ , ~ ~ q ]  

for small 7 and H;n is O ( v ) .  Then V,W;, is 0 ( 1 )  and 

(34) 

(35) 

so that, only in the case where r and q are square matrices, we can write 
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The non-local part, NL, of the Hamiltonian structure is given by 

N L =  -%q, a - ' [ %  V,W,ll (37) 
where we have made the choice r = I,,. 

Again, there is no way that this can vanish except for the single-component case. 
So these generalised K d v  equations have no local Hamiltonian structures of third order 
in a. 

On the other hand, the %-'J structure does have local many-component reductions. 
In place of (27) and (28) we have 

Again, we must have r invertible and may write qr = q'so that from (39) alone we obtain 

qjf, = - t a i ~ V , . ~ ,  (40) 
provided we impose no further constraints on the matrix q. These generalised K d v  

equations are studied in [8]. (Note that for r not square, say n x m with n > m, one 
may find an m x n matrix i (not unique) such that ir  = I ,  and define new dependent 
variables by q ' =  qr. Then (39) becomes 

(41 1 q' =-- :aaV q . ~ 4  
I f3 

and is locally Hamiltonian [3] in terms of the m2 coordinates q ; . )  
It should be emphasised that the local bi-Hamiltonian structure of the K d v  does 

not generalise (within this class) and neither does the local M K d v  structure. 
The above discussion is germane to those equations associated, in the language of 

[2,3], with the series of symmetric spaces A I I I  for n = m. The symmetric and antisym- 
metric reductions of (39), q = qT and q = -qT correspond to the symmetric spaces CI  
and DII I  respectively. Their Hamiltonian structures are discussed in appendix 2 .  For 
class BDI symmetric spaces one no longer has Q+P' = Q-P-  = 0 for any Q and P, 
relations which were assumed in writing down (30) for instance. However, they contain 
as reductions members of the A I I I  series for which n # m and are hence without local 
structures. (One would not expect a local structure to reduce to a non-local structure 
under a componentwise reduction.) Whilst somewhat negative, these results do clarify 
the relation between reductions and local Hamiltonian structures. 
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Appendix 1 

In this appendix we generalise an argument reproduced in [9]. From the general 
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matrix problem (18)-(21) one obtains the matrix Riccati equation: 

r,x+t[A, rl+Q-rQr=O ( A l . l )  

where y is of the same form as Q. Define the two quantities 

<Q = Tr( Q y )  

4 = Tr(AQ7). 

Since y has an  expansion of the form 
m 

Y =  c ( a l ) - " m  
, = I  

(A1.2) 

(A1.3) 

(A1.4) 

so d o  8 and 6. In particular the coefficients of (-" in 6 are, up  to constant factors, 
the integrands of the Hamiltonian functionals W,: W,  = C, d x  a,+, . We may write 
y and 6 as sums of parts corresponding to even and odd values of n:  

@ = @ ( + ) + @ ( - I  y = y ( - ) .  (A1.5) 

From ( A l . l )  one easily derives an  expression for ,S3 as an  x derivative: 

,Q = {ln[de t ( l -  Y ) ] } , ~ .  (A1.6) 

To consider the M K d v  type reductions note that 
T T T  

r:x-t[A,yT1+QT-y Q Y = o  

r(Q, 5) = YT(Q7', - 5 )  

y'*t'( 0') = * y(*)T( Q). 

which, together with ( A l . l ) ,  implies 

and consequently 

(A1.7) 

(A1.8) 

(A1.9) 

This provides us with a n  identity for the Hamiltonian densities associated with the 
Q and Q' equations: 

n - m  
n + m  

$j"'(QT) *@(*)(  Q) = *a- ,tt = 0 ( A l .  10) 

where = is the equivalence relation 'modulo x derivatives'. So under the reduction 
Q = Q' we obtain Q'"( Q) = 0, i.e. Q 2 ,  = 0 or  W Z n + ,  = 0, for n > 0. Further, if we write 
Q = v + 7, where v is symmetric and 7 antisymmetric, then from (A1.lO) 

( A l . l l )  g7-y v + 7 )  3 @ ( - I (  21 - 7 )  

is an even function of 7. Hence, for small 7 

W * n [ Q l =  ~2,[~1+o(72)* 

For the K d v  type reduction, p = r = constant, write y as 

Then 

(Al.12) 

(A1.13) 

@(+I = Tr{ AQy'+'} = -a  Tr{ r a ( + ) }  (A1.14) 
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by virtue of (A1.6), where the second trace is taken over m x m matrices. But (Al.1) 
gives us a Riccati equation for a :  

(A1.15) + &a + q - ara = 0 

and from the part of this odd in 5 we deduce the relation 

Tr{ra‘+’} =i{ln[det(l- ( 2 / ~ u ) r ~ ( - ) ) ] } , ~ .  

Consequently @ ( + I  = 0 and again W,,,, = 0. 

(Al.  16) 

Appendix 2 

Equation (40) is written either as 

a24,1, = (4,xx+3qrq),x (A2.1) 

or as 

a2q:,, = (q:x.Y+3dqt),x. (A2.2) 

Provided q suffers no constraints, the Hamiltonian structure (40) suffices. 
However, when q = qT and r = rT (as is the case for the symmetric space C I )  we 

write q = qo+ U + uT for U strictly upper triangular and qo diagonal and then, as can 
be seen from the part of W4 quadratic in q, proportional to Tr{q~,,+2u>u,,}, we have 

where we sum over k only and, for j >  i, 

(A2.3) 

(A2.4) 

where we sum over k and 1 with 1 > k. 
Again, when q and r are antisymmetric (the case DI I I ) ,  we write q = U - uT for U 

strictly upper triangular, W 4  is proportional to Tr{2u;u,,} and equation (A2.4) only 
applies. 

Note that the above reductions are equivalent to reductions of (A2.2) of the form 
qtTr = *rq’ with r = rT or r = -rT. 

More generally, we might consider (A2.1) under the reduction r’q = qTr’ with r = r I T  

which further implies r’r = rTr‘. But this is equivalent to the C I  case. Likewise the 
reduction with r’q = -qTr‘ reduces to D I I I .  

Such reductions are not without interest. They include, for instance, the almost 
persymmetric reduction, q,,J = q,+l - , ,n+l -r .  In the case n = 2 this gives us the three- 
component system: 

0 0 1 s / s p ,  

1 0 0 s /sp,  
( ; ; ) , . ;=a (0 t ,)!s/sp2) dxW (A2.5) 

where W = -pi,x - ~ ~ , , ~ p ~ , ~  - 2p: - 6p,p,p3 and this is not equivalent to the symmetric 
reduction. 

It is not clear whether such reductions and their composites exhaust all possible 
reductions. 
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